Понятия со словосочетанием «социальный граф»
Социа́льный граф — граф, узлы которого представлены социальными объектами, такими как пользовательские профили с различными атрибутами (например: имя, день рождения, родной город), сообщества, медиаконтента и так далее, а рёбра — социальными связями между ними.
Связанные понятия
Стохастическая оптимизация — класс алгоритмов оптимизации, использующая случайность в процессе поиска оптимума. Случайность может проявляться в разных вещах.
Обуче́ние ранжи́рованию (англ. learning to rank или machine-learned ranking, MLR) — это класс задач машинного обучения с учителем, заключающихся в автоматическом подборе ранжирующей модели по обучающей выборке, состоящей из множества списков и заданных частичных порядков на элементах внутри каждого списка. Частичный порядок обычно задаётся путём указания оценки для каждого элемента (например, «релевантен» или «не релевантен»; возможно использование и более, чем двух градаций). Цель ранжирующей модели...
Интерактивная визуализация данных — способ графического представления информации, позволяющий пользователю взаимодействовать с системой отображения информации и наблюдать ответную реакцию системы.
Бизнес-логика — в разработке информационных систем — совокупность правил, принципов, зависимостей поведения объектов предметной области (области человеческой деятельности, которую система поддерживает). Иначе можно сказать, что бизнес-логика — это реализация правил и ограничений автоматизируемых операций. Является синонимом термина «логика предметной области» (англ. domain logic). Бизнес-логика задает правила, которым подчиняются данные предметной области.
Машинное обучение (англ. machine learning, ML) — класс методов искусственного интеллекта, характерной чертой которых является не прямое решение задачи, а обучение в процессе применения решений множества сходных задач. Для построения таких методов используются средства математической статистики, численных методов, методов оптимизации, теории вероятностей, теории графов, различные техники работы с данными в цифровой форме.
Релевантность в информационной науке и информационном поиске означает степень соответствия найденного документа или набора документов информационным нуждам пользователя (Релевантность, Relevance).
Логическая схема — модель базы данных, выраженная в понятиях модели данных. Этим отличается от концептуальной модели, описывающей семантику предметной области без указания технологии (конкретных методов реализации), и от физической модели, которая описывает конкретные физические механизмы, применяемые для хранения данных в накопителях.
Формальные методы занимаются приложением довольно широкого класса фундаментальных техник теоретической информатики: разные исчисления логики, формальных языков, теории автоматов, формальной семантики, систем типов и алгебраических типов данных.
Анализ данных — область математики и информатики, занимающаяся построением и исследованием наиболее общих математических методов и вычислительных алгоритмов извлечения знаний из экспериментальных (в широком смысле) данных; процесс исследования, фильтрации, преобразования и моделирования данных с целью извлечения полезной информации и принятия решений. Анализ данных имеет множество аспектов и подходов, охватывает разные методы в различных областях науки и деятельности.
Формальная верификация или формальное доказательство — формальное доказательство соответствия или несоответствия формального предмета верификации его формальному описанию. Предметом выступают алгоритмы, программы и другие доказательства.
Экспе́ртная систе́ма (ЭС, англ. expert system) — компьютерная система, способная частично заменить специалиста-эксперта в разрешении проблемной ситуации. Современные экспертные системы начали разрабатываться исследователями искусственного интеллекта в 1970-х годах, а в 1980-х годах получили коммерческое подкрепление. Предшественники экспертных систем были предложены в 1832 году С. Н. Корсаковым, создавшим механические устройства, так называемые «интеллектуальные машины», позволявшие находить решения...
Мягкие вычисления — понятие, введённое Лотфи Заде в 1994 году, объединяющее в общий класс неточные, приближённые методы решения задач, зачастую не имеющие решение за полиномиальное время. Задачи, решаемые такого класса методами, возникают в области биологии, медицины, гуманитарных наук, робастного управления, менеджменте.
Байесовское программирование — это формальная система и методология определения вероятностных моделей и решения задач, когда не вся необходимая информация является доступной.
Математи́ческая стати́стика — наука, разрабатывающая математические методы систематизации и использования статистических данных для научных и практических выводов.
Семанти́ческие веб-се́рвисы (англ. Semantic Web Services, SWS; иногда Semantic Web Web Services, SWWS) — законченные элементы программной логики с однозначно описанной семантикой, доступные через Интернет и пригодные для автоматизированного поиска, композиции и выполнения с учетом их семантики. В тематической литературе часто называются «динамической составляющей семантической паутины».
Извлечение информации (англ. information extraction) — это задача автоматического извлечения (построения) структурированных данных из неструктурированных или слабоструктурированных машиночитаемых документов.
Визуализация данных — это представление данных в виде, который обеспечивает наиболее эффективную работу человека по их изучению. Визуализация данных находит широкое применение в научных и статистических исследованиях (в частности, в прогнозировании, интеллектуальном анализе данных, бизнес-анализе), в педагогическом дизайне для обучения и тестирования, в новостных сводках и аналитических обзорах. Визуализация данных связана с визуализацией информации, инфографикой, визуализацией научных данных, разведочным...
Нейроуправление (англ. Neurocontrol) — частный случай интеллектуального управления, использующий искусственные нейронные сети для решения задач управления динамическими объектами. Нейроуправление находится на стыке таких дисциплин, как искусственный интеллект, нейрофизиология, теория автоматического управления, робототехника. Нейронные сети обладают рядом уникальных свойств, которые делают их мощным инструментом для создания систем управления: способностью к обучению на примерах и обобщению данных...
Релева́нтность (англ. relevance — актуальность, уместность) в информационном поиске — соответствие интента (поискового намерения), заложенного в запросе и выдаче в поисковой системе, полученной в результате этого запроса. Пользователь, который вводит запрос в поисковую систему ожидает, что результаты будут соответствовать намерению, которое он заложил в запросе, иными словами он получит релевантную выдачу.
Вычислительная среда (англ. computational environment) — это совокупность объектов, участвующих в вычислениях, причем каждый раз требуется определение того, что считается объектом, и что понимается под вычислениями, то есть трактовка этих терминов зависит от контекста употребления. Так, например, в программной инженерии под вычислительной средой понимается совокупность программных компонентов и сервисов, интегрируемых в рамках одного приложения (реализующего некоторый процесс в определенной предметной...
Структурное прогнозирование или структурное обучение является собирательным термином для техник обучения машин с учителем, которые вовлекают предвидение структурных объектов, а не скалярных дискретных или вещественных значений.
Кластерный анализ (англ. cluster analysis) — многомерная статистическая процедура, выполняющая сбор данных, содержащих информацию о выборке объектов, и затем упорядочивающая объекты в сравнительно однородные группы. Задача кластеризации относится к статистической обработке, а также к широкому классу задач обучения без учителя.
Роба́стное управле́ние — совокупность методов теории управления, целью которых является синтез такого регулятора, который обеспечивал бы хорошее качество управления (к примеру, запасы устойчивости), если объект управления отличается от расчётного или его математическая модель неизвестна. Таким образом, робастность означает малое изменение выхода замкнутой системы управления при малом изменении параметров объекта управления. Системы, обладающие свойством робастности, называются робастными (грубыми...
Выделение знаний (англ. Knowledge extraction) — это создание знаний из структурированных (реляционных баз данных, XML) и неструктурированных источников (тексты, документы, изображения). Полученное знание должно иметь формат, позволяющий компьютерный ввод, и должно представлять знания так, чтобы облегчить логические выводы. Хотя по методике процесс подобен извлечению информации (обработке естественного языка, англ. Natural language processing, NLP) и процессу «Извлечения, Преобразования, Загрузки...
Оптимизирующий компилятор — компилятор, в котором используются различные методы получения более оптимального программного кода при сохранении его функциональных возможностей. Наиболее распространённые цели оптимизации: сокращение времени выполнения программы, повышение производительности, компактификация программного кода, экономия памяти, минимизация энергозатрат, уменьшение количества операций ввода-вывода.
Согласованность данных (иногда консистентность данных, англ. data consistency) — согласованность данных друг с другом, целостность данных, а также внутренняя непротиворечивость.
Реляционная модель данных (РМД) — логическая модель данных, прикладная теория построения баз данных, которая является приложением к задачам обработки данных таких разделов математики, как теория множеств и логика первого порядка.
Дистрибути́вная сема́нтика — это область лингвистики, которая занимается вычислением степени семантической близости между лингвистическими единицами на основании их распределения (дистрибуции) в больших массивах лингвистических данных (текстовых корпусах).
Абстра́ктный тип да́нных (АТД) — это математическая модель для типов данных, где тип данных определяется поведением (семантикой) с точки зрения пользователя данных, а именно в терминах возможных значений, возможных операций над данными этого типа и поведения этих операций.
Теория оценивания — раздел математической статистики, решающий задачи оценивания непосредственно не наблюдаемых параметров сигналов или объектов наблюдения на основе наблюдаемых данных. Для решения задач оценивания применяется параметрический и непараметрический подход. Параметрический подход используется, когда известна математическая модель...
Когнитивная карта (от лат. cognitio — знание, познание) — образ знакомого пространственного окружения.
Систе́ма подде́ржки приня́тия реше́ний (СППР) (англ. Decision Support System, DSS) — компьютерная автоматизированная система, целью которой является помощь людям, принимающим решение в сложных условиях для полного и объективного анализа предметной деятельности. СППР возникли в результате слияния управленческих информационных систем и систем управления базами данных.
Поиск данных — раздел информатики, изучающий алгоритмы для поиска и обработки информации как в структурированных (см. напр. базы данных) так и неструктурированных (напр., текстовый документ) данных. Поиск данных неразрывно связан с понятием фильтрации данных.
Самоорганизу́ющаяся ка́рта Ко́хонена (англ. Self-organizing map — SOM) — нейронная сеть с обучением без учителя, выполняющая задачу визуализации и кластеризации. Идея сети предложена финским учёным Т. Кохоненом. Является методом проецирования многомерного пространства в пространство с более низкой размерностью (чаще всего, двумерное), применяется также для решения задач моделирования, прогнозирования, выявление наборов независимых признаков, поиска закономерностей в больших массивах данных, разработке...
Коиндукция в информатике — метод для определения и доказательства свойств систем параллельно взаимодействующих объектов (обобщённо). С математической точки зрения является дуальной к структурной индукции.
Модель данных — это абстрактное, самодостаточное, логическое определение объектов, операторов и прочих элементов, в совокупности составляющих абстрактную машину доступа к данным, с которой взаимодействует пользователь. Эти объекты позволяют моделировать структуру данных, а операторы — поведение данных.
Функциональные базы данных используются для решения аналитических задач, таких как финансовое моделирование и управление производительностью. Функциональная база данных или коротко функциональная модель отличается от реляционной модели. Функциональная модель также отличается от других аналогично названных концепций, включая модель функциональной базы данных DAPLEX и базы данных функциональных языков.
Адаптивная оптимизация — это техника в информатике и программировании, которая производит динамическую перекомпиляцию кусков программы, основываясь на текущем профиле исполнения. В простейшем случае реализации, адаптивный оптимизатор может просто выбирать между компиляцией на лету и интерпретацией инструкций. На другом уровне адаптивная оптимизация может использовать преимущества локальных условий по данным для оптимизации ветвлений и использовать встраивания функций (англ. Inline expansion), чтобы...
Рефа́кторинг (англ. refactoring), или перепроектирование кода, переработка кода, равносильное преобразование алгоритмов — процесс изменения внутренней структуры программы, не затрагивающий её внешнего поведения и имеющий целью облегчить понимание её работы. В основе рефакторинга лежит последовательность небольших эквивалентных (то есть сохраняющих поведение) преобразований. Поскольку каждое преобразование маленькое, программисту легче проследить за его правильностью, и в то же время вся последовательность...
Параллельные вычисления — способ организации компьютерных вычислений, при котором программы разрабатываются как набор взаимодействующих вычислительных процессов, работающих параллельно (одновременно). Термин охватывает совокупность вопросов параллелизма в программировании, а также создание эффективно действующих аппаратных реализаций. Теория параллельных вычислений составляет раздел прикладной теории алгоритмов.
Цель (кибернетика) — желаемое состояние кибернетической системы, достигаемое в управляемом процессе развития системы. Состояние системы, как и её траектория в пространстве состояний, оценивается с точки зрения их соответствия или несоответствия цели. Математически выражением такой оценки является целевая функция, целевой функционал или критерий качества системы, критерий оптимизации.
Графовая вероятностная модель — это вероятностная модель, в которой в виде графа представлены зависимости между случайными величинами. Вершины графа соответствуют случайным переменным, а рёбра — непосредственным вероятностным взаимосвязям между случайными величинами.